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Abstract

Bacillus anthracis, the causative agent of anthrax, is a spore-forming bacterium that primarily 

affects herbivorous livestock, wildlife and humans exposed to direct contact with infected animal 

carcasses or products. To date, there are a limited number of studies that have delineated the 

potential global distribution of anthrax, despite the importance of the disease from both an 

economic and public health standpoint. This study compiled occurrence data (n = 874) of 

confirmed human and animal cases from 1954 to 2021 in 94 countries. Using an ensemble 

ecological niche model framework, we developed updated maps of the global predicted ecological 

suitability of anthrax to measure relative risk at multiple scales of analysis, including a model for 

circumpolar regions. Additionally, we produced maps quantifying the disease transmission risk 

associated with anthrax to cattle, sheep and goat populations. Environmental suitability for B. 
anthracis globally is concentred throughout Eurasia, sub-Saharan Africa, the Americas, Southeast 

Asia, Australia and Oceania. Suitable environments for B. anthracis at the circumpolar scale 

extend above the Arctic Circle into portions of Russia, Canada, Alaska and northern Scandinavia. 

Environmental factors driving B. anthracis suitability globally include vegetation, land surface 

temperature, soil characteristics, primary climate conditions and topography. At the circumpolar 

scale, suitability is influenced by soil factors, topography and the derived climate characteristics. 

The greatest risk to livestock is concentrated within the Indian subcontinent, Australia, Anatolia, 

the Caucasus region, Central Asia, the European Union, Argentina, Uruguay, China, the United 

States, Canada and East Africa. This study expands on previous work by providing enhanced 

knowledge of the potential spatial distribution of anthrax in the Southern Hemisphere, sub-Saharan 

Africa, Asia and circumpolar regions of the Northern Hemisphere. We conclude that these updated 
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maps will provide pertinent information to guide disease control programs, inform policymakers 

and raise awareness at the global level to lessen morbidity and mortality among animals and 

humans located in environmentally suitable areas.
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1 | INTRODUCTION

Bacillus anthracis, the causative agent of anthrax, is a gram-positive, rod-shaped and spore-

forming bacterium that primarily affects herbivorous livestock and wildlife and is usually 

fatal among these animals (Fasanella et al., 2010; Shadomy & Smith, 2008; WHO, 2008). 

Humans can acquire anthrax via cutaneous, ingestion, inhalation or injection routes. Most 

human cases are associated with direct contact with infected carcasses or contaminated 

animal products and can result in significant public health impacts if not correctly diagnosed 

and treated. In addition, B. anthracis spores can survive in the environment for long periods, 

resulting in recurrent contamination of livestock and the existence of high-risk areas for 

anthrax outbreaks (Hugh-Jones & Blackburn, 2009; Romero-Alvarez et al., 2020; Schmid 

& Kaufmann, 2002). Although the disease is distributed worldwide, it is endemic to Africa, 

the Middle East, South America and Central Asia, where outbreaks cause substantial public 

health and economic burdens (Hugh-Jones & Blackburn, 2009; Shadomy et al., 2016; 

Sushma et al., 2021). Furthermore, in endemic, low-resource areas, anthrax outbreaks in 

livestock often lead to secondary human infections through the practice of slaughtering sick 

animals to recoup income or food from lost animals (Bengis & Frean, 2014; Misgie et al., 

2015).

Spatial modelling of disease distribution can help identify and predict high-risk areas for 

infectious diseases (Gangnon & Clayton, 2000; Peterson, 2006). Several approaches have 

been used to explore and predict the geographic distribution of suitable environments under 

which potential spore survival and possible anthrax transmission may occur (Kracalik et 

al., 2012; Otieno et al., 2021). Anthrax risk maps created by ecological niche modelling 

(ENM) are critical tools for understanding the epizootiology of the disease and prioritising 

areas for interventions. ENM is a quantitative technique that links occurrence data with 

remotely sensed environmental coverages, allowing for developing a correlative model of 

relative suitability for a pathogen. This approach has been previously used to estimate 

the spatial distributions of multiple pathogens at global and regional scales. For example, 

previous anthrax ENMs have estimated the distribution of B. anthracis in places like the 

United States, Australia, Central Africa and globally (Barro et al., 2016; Blackburn et al., 

2007; Carlson et al., 2019; Chikerema et al., 2013; Mullins et al., 2013). These studies have 

regularly shown associations between B. anthracis spore survival and environmental factors 

such as soil organic matter concentration, soil pH, calcium concentrations and climatic 

conditions.
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Ensemble ENM combines information from multiple individual models to predict an 

outcome. Ensemble forecasting enables a more robust model that can overcome the inherent 

uncertainties derived from each model by including multiple modelling algorithms (Sharma 

et al., 2021). This approach has been used in health research for the burden of disease 

estimates and, more recently, to predict disease spatial and temporal distribution (Bannick 

et al., 2020; Ray & Reich, 2018). In this study, we expand on previous work performed 

to predict the potential global ecological niche of anthrax by exploring the relationship 

between occurrence locations and environmental factors via an ensemble ENM framework. 

In addition, due to the emergence of anthrax in the Arctic region associated with climate 

change and melting permafrost (Stella et al., 2020), this study also provided an update to 

the potential ecological niche of anthrax in circumpolar areas. Furthermore, we quantified 

the disease transmission risk to cattle, goat and sheep populations globally by combining our 

niche modelling methodology with livestock density data. Previous studies have applied this 

risk mapping procedure to estimate exposure risk to infectious diseases (Alaniz et al., 2017, 

2020; Carvajal et al., 2020). This information is critical to identifying areas for building 

veterinary and public health capacity to adequately prevent and respond to anthrax outbreaks 

in livestock, wildlife and humans.

2 | DATA AND METHODS

2.1 | Occurrence data

We assembled an occurrence dataset from a combination of human and animal cases and 

anthrax animal burial sites reported by ProMed Mail (https://promedmail.org/), laboratory-

confirmed isolates of B. anthracis, published articles from Google Scholar (https://

scholar.google.com/) and PubMed (https://pubmed.ncbi.nlm.nih.gov/) and geo-referenced 

data from digitized maps (please see Supporting Information Table S1). Search terms 

included, for example, ‘anthrax United States’, ‘anthrax Russia’, ‘anthrax Africa’, ‘anthrax 

animals’ and ‘anthrax human’. All types of studies were included. No time range or 

article type limits were applied. The compiled database totalled 874 records spanning 94 

countries and a temporal range from 1954 to 2021. Before the modelling stage, we removed 

duplicate and spatially autocorrelated occurrence records by spatially filtering our dataset at 

a threshold of 50 km using the R programming language (Team R, 2013) package spThin 

(Aiello-Lammens et al., 2015). The final cleaned dataset contained 713 unique spatial 

locations. Spatial information for each site was manually georeferenced with Google Earth 

(https://earth.google.com/) and the OpenStreetMap Project (https://www.openstreetmap.org/

#map=5/38.007/-95.844). Coordinates for these locations were standardized in a geographic 

coordinate system (WGS84) in ArcGIS Desktop 10.8.1. (ESRI. ArcGIS desktop: release 

10.8.1. Environmental Systems Research Institute).

2.2 | Model calibration area (M)

The model calibration area or M region was delineated as point buffers of 250 km (Simoes 

et al., 2020). This step is an essential component of the general theory of niche modelling 

and corresponds to M in the biotic (B), abiotic (A), and movement (M) framework (Simoes 

et al., 2020; Soberón & Peterson, 2005). Previous work by Romero-Alvarez (2020) and 

colleagues implemented a similar calibration strategy in mapping the potential ecological 
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suitability of B. anthracis and B. cereus biovar anthracis in sub-Saharan Africa. The M 
region is the area within the broader background landscape that has ‘likely’ to have been 

tested by the species but is not completely occupied (Barve et al., 2011). Thus, the M 
region represents the hypothesized region in which a species can explore and colonize over 

time (Romero-Alvarez et al., 2020). ENMs can be susceptible to overinflation of evaluation 

metrics based on the choice of study area. For example, larger calibration areas tend to 

inflate evaluation metrics and bias conclusions (Barve et al., 2011; Simoes et al., 2020). 

The selection of M has a strong influence on model validation as demonstrated by Lobo et 

al. (2008). Lobo et al. (2008) highlight that during validation, areas outside of M will be 

predicted at lower suitability levels, and as a result, because of the inclusion of these areas, 

the model may display misleading evaluation statistics.

2.3 | Environmental predictors

Gridded environmental coverages represented climate and water balance data, soil 

characteristics, vegetation (EVI), land surface temperature (LST) and topographic features 

(Table 1). High-resolution climatological data were obtained from TerraClimate (1981—

2010; http://www.climatologylab.org/terraclimate.html), a global repository of ecological 

and hydrological variables (Abatzoglou et al., 2018) at a 2.5 arc-min resolution. 

The TerraClimate dataset features monthly data for terrestrial surfaces and combines 

climatological normals from the WorldClim (Fick & Hijmans, 2017) dataset with time-

varying data from CRU Ts4.0 and the Japanese 55-year Reanalysis (Abatzoglou et al., 

2018). We chose not to incorporate the widely cited WorldClim database (Fick & Hijmans, 

2017) in this study due to known spatial artefacts and uncertainties (Bobrowski et al., 2021; 

Escobar et al., 2014). The TerraClimate dataset is advantageous because of the inclusion of 

hydrological and surface hydrological process variables (Lemenkova, 2022).

These data were subsequently divided into their derived and primary characteristics for 

this analysis (http://www.climatologylab.org/terraclimate.html). The primary characteristics 

(Set 1) were the maximum (tmax) and minimum temperature (tmin), vapour pressure (vap), 

precipitation (ppt), downwards surface shortwave radiation (srad) and wind speed (ws). The 

derived variables (Set 2) include actual evapotranspiration (aet), potential evapotranspiration 

(pet), climate water deficit (def), soil moisture (soil), snow water equivalent (swe) and 

vapour pressure deficit (vpd). Gridded soil coverages were obtained from the Soil Grids 

(https://soilgrids.org/) database at a depth of 0–5 cm at a spatial resolution of 10 km (Set 3). 

These soil properties are identified as critical ecological predictors of B. anthracis, including 

soil pH (H20 content), cation exchange capacity and organic carbon content (Carlson et al., 

2019; Romero-Alvarez et al., 2020).

The Van Ness (1971) ‘incubator area’ hypothesis postulates that the ideal environment 

for spore germination exists under conditions of alkaline pH, soil moisture, the presence 

of organic matter and ambient air temperature above 15.5◦C. Additionally, we included 

a moderate resolution imaging spectroradiometer (MODIS), enhanced vegetation index 

(EVI; ∼1 km; mean monthly) and mean 8-day land surface temperature (LST) (∼1 km) 

datasets (Set 4; Tomislav, 2018) from the WorldGrids archive (https://zenodo.org/record/

1637816#.YmXwQOjMKUk). Vegetation biomass (EVI) and land surface temperature 
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(LST) are important variables when estimating the ecological niche of B. anthracis and 

various livestock-related diseases (Chikerema et al., 2013; Kracalik et al., 2013; Otieno et 

al., 2021; Suresh et al., 2022). We further considered topographic features: elevation and 

slope (Amatulli et al., 2018) (∼10 km; Dragon & Rennie, 1995; Driciru et al., 2020; Van 

Ness, 1971; Set 5). Dragon and Rennie (1995) emphasize that the interaction between water, 

rainfall and topographic features can cause spore concentrations in low-lying areas. These 

would include bottomlands and the beds of creeks and rivers. We resampled all variables at 

a 10-km resolution to ensure a uniform cell size and processing extent using resampling and 

masking tools available in ArcGIS Desktop 10.8.1. (ESRI. ArcGIS desktop: release 10.8.1. 

Environmental Systems Research Institute; www.esri.com).

2.4 | Principal component analysis (PCA)

A PCA reduced multicollinearity and dimensionality between the environmental variables. 

The covariates were separated into five sets (Sets 1–5) to calculate the main principal 

components (PCs) using the cross-platform application Niche Analyst (Quio et al., 2016; 

http://nichea.sourceforge.net/). PCA is an orthogonal linear transformation that is used for 

both exploratory and predictive modelling (Joliffe, 2002). Here, a PCA was conducted for 

the environmental space defined by the M region and projected globally (Figure 1) and 

to circumpolar areas greater than 55◦ N latitude (Figure 2). Previous ENM studies have 

applied a similar two-step process for calibrating and projecting PCs to create new sets of 

orthogonal predictors (Alkishe & Peterson, 2021 ; Deka et al., 2022; Romero-Alvarez et al., 

2020). For the TerraClimate dataset, the first four PCs were retained for the primary climate 

characteristics (98%), and the first five for the derived climate variables (97%). In addition, 

we retained three PCs for soil (100%) and two PCs for vegetation (EVI) and land surface 

temperature (LST) (100%), as well as elevation—slope (100%).

2.5 | Ecological niche modeling (ENM)

The ENMs presented in this study were created with the R programming language (Team 

R, 2013) package ‘biomod2’ (Thuiller et al., 2016). Biomod2 is an ensemble ENM platform 

that allows for the forecasting of species distributions with the application of multiple 

modelling techniques. This method reduces the predictive uncertainty that can occur due to 

intermodal variability by combining multiple models to determine dominant trends in the 

data (Elith & Graham, 2009). In total, eight algorithms were selected (8 × 10 replicates 

= 80 models): generalized boosted models (GBM;Elith et al., 2008), generalized additive 

models (GAM;Guisan et al., 2002), generalized linear models (GLM;Guisan et al., 2002), 

random forest (RF; Breiman, 2001), artificial neural networks (ANN; Lek & Guegan, 1999), 

classification tree analysis (CTA; Vayssieres et al., 2000), flexible discriminant analysis 

(FDA; Hastie, 1994) and multiple adaptive regression splines (MARS; Friedman, 1991).

Pseudoabsence (PA) data within the M region were generated with the ‘surface range 

envelope’ model, which selected random points outside of the suitable area estimated by 

a rectilinear surface envelope from the model presence sample (quantile = 0.025 – 95% 

confidence interval; Thuiller et al., 2016). Within M, because we are constraining our 

calibration region, we specified for the global ensemble a 1:1 ratio (713:713; presence/

pseudoabsence) and a 2:1 ratio (presence/pseudoabsence; 75:150) for the circumpolar model 
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to account for the smaller dataset. Common mistakes associated with PA generation for 

ENM are often the choice of using an excessive number of PAs, compared to occurrences 

(Sillero & Barbosa, 2021). We chose to equally weight our presence and PA data for 

each model (i.e., the weighted sum of presence equals the weighted sum of absences) as 

recommended by Barbet-Massin et al. (2012). The application of pseudoabsences in ENM 

is well established in quantitative disease ecology (Bhatt et al., 2013; Carlson et al., 2019; 

Hassan et al., 2021; Pigott et al., 2014). Next, we specified that 80% of the data within the 

M region be assigned as a random sample, with the remaining 20% used for verifying the 

model using the area under the curve (AUC) of the receiver operating characteristic (ROC; 

Elith et al., 2011).

An ensemble evaluation metric threshold specified that only ROC values greater than 0.80 

were to be included to construct the final ensembles. The ROC (AUC) ranges from 0 

to 1 and is determined by a comparison of the null model with the randomly predicted 

AUC value equal to 0.50. Values greater than 0.75 are regarded as being sufficiently 

discriminatory and useful (Elith et al., 2011). Variable importance of the PC sets (Sets 1–5) 

was calculated through a shuffling process of a single variable within the dataset and the 

correlation of the model predictions with the initial (i) and shuffled data (ii). Values closer 

to 0 assume that the variable has no influence on the model (Dutra Silva et al., 2019). Thus, 

we ranked variables of greatest contribution to both the global and circumpolar ensembles 

based on their high to low scores (mean over 80 replicates). The global and circumpolar 

ensembles (median) were classified into four suitability classes: (1) very high, (2) high, (3) 

medium and (4) low risk (natural breaks - Jenks). We computed the coefficient of variation 

(CV; sd/median) from the ENM projections to account for uncertainty in our models. Higher 

CV values represent greater model uncertainty, while the lower the CV values, the less 

uncertainty is present. We further divided these values into four classifications: (1) low, (2) 

moderate, (3) high and (4) very high uncertainty (natural breaks - Jenks).

2.6 | Model evaluation

The partial ROC (pROC) (Peterson et al., 2008) metric (5% training omission error rate; E 

= 0.05, i.e., sensitivity > 0.95) was applied to evaluate model performance and prediction. 

Unlike the traditional ROC metric (Elith et al., 2011), the pROC accesses omission error 

for independent points and the predicted area suitable for the species. Partial AUC values 

are derived from the ratio between the AUC and the null expectations of the AUC. The 

corresponding pROC ratios thus range from 0–2 (values of 1 = random performance; 

Peterson, 2012; Peterson et al., 2008). Partial AUC ratios greater than 1 and closer to 

2 indicate better model predictive performance. Bootstrapping was applied to test for 

statistical significance of the AUCs (compared to the null expectations) by resampling 50% 

of the available data with 1000 iterations. The pROC tests were conducted with the R 

programming language (Team R, 2013) package ENMGadgets (Barve & Barve, 2013).

2.7 | Quantifying zones of exposure risk for livestock

The disease transmission risk of B. anthracis was mapped by linking the ecological niche 

of the bacterium with the potentially exposed livestock population. These zones of exposure 

risk were based on two primary factors: (i) the potential environmental suitability of 
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B. anthracis and (ii) the density of cattle, goats and sheep (Alaniz et al., 2017, 2020; 

Carvajal et al., 2020). This methodology falls into the realm of precision public health, 

which integrates geolocated health information and maps to identify regions of elevated 

disease risk with a high degree of spatial accuracy (Osgood-Zimmerman et al., 2018; 

Reich & Haran, 2018). Gridded livestock density data for cattle, goats and sheep were 

obtained from the Food and Agricultural Organisation (FAO) of the United Nations Map 

Catalog (https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/home; ∼10 km). The 

combined livestock data were first reclassified into four categories: null (< 1 animal/km2), 

low (> 1–10 animals/km2), medium (> 11–100 animals/km2) and high (> 101 animals/km2). 

For each category, new values were assigned: null = 0, low = 1, medium = 2, high = 3. We 

then reclassified the global ensemble model into four categories: null (0), low (1), medium 

(2) and high (3) with an equal interval classification type. Both grids were multiplied 

together using the Raster Calculator tool in ArcGIS 10.8.1 (ESRI. ArcGIS desktop: release 

10.8.1. Environmental Systems Research Institute; www.esri.com). The risk map legend 

symbolizes exposure zones as: very high, high, medium, low and very low.

3 | RESULTS

We compiled 874 occurrences of anthrax from 94 countries spanning the period from 1954 

to 2021 (see Supporting Information, Appendix Figure 1). The majority of the occurrence 

data (75%) were collected from Russia (115), China (87), the United States (65), Australia 

(60), India (42), Kazakhstan (41), Turkey (35), Canada (28), Argentina (24), France (19), 

Iran (18), New Zealand (17), Zimbabwe (16), Italy (15), Bangladesh (15), Indonesia (14), 

Namibia (11), Kyrgyzstan (11), Kenya (10) and Chad (10). Model evaluation tests using 

the pROC approach determined that both ensembles yielded predictions above the null 

expectations. The global model had an average pROC ratio value of 1.57 (max: 1.73, min: 

1.51), while the circumpolar model had an average pROC ratio score of 1.69 (max: 1.84, 

min: 1.46 ). The algorithm’s predictive performance for the global ensemble was highest 

among the GBM, RF, GAM and FDA algorithms. Traditional ROC scores for GBM ranged 

from 0.859 to 0.796, RF: 0.849 to 0.797; GAM: 0.844 to 0.782 and FDA: 0.836 to 0.753. 

Additionally, MARS (0.834–0.764), ANN (0.831–0.762), GLM (0.826–0.753) and CTA 

(0.794–0.681) also displayed good overall predictive performance. Algorithm statistics for 

the circumpolar ensemble favored ANN (0.821–0.557), GBM (0.82–0.631), FDA (0.812–

0.507), GLM (0.804–0.602) and RF (0.803–0.589). The algorithms with lower ROC scores 

were CTA (0.799–0.524), MARS (0.796–0.473) and GAM (0.729–0.554).

The global ensemble predicted well-established enzootic regions and those without reported 

human or animal cases (Figure 3). These areas occupy a broad geographic extent in the 

Northern and Southern Hemispheres. Hotspots in North America are prevalent throughout 

the Great Plains, Great Lakes region, central-southern California, Rocky Mountains, Pacific 

Northwest, Northwest Territories, Alberta and Saskatchewan. Suitability in Latin America 

is concentrated throughout Mexico, the Caribbean, northern Venezuela, Peru, Ecuador, 

Chile, Bolivia, Argentina, Uruguay and eastern Brazil. Our model predicted much of the 

known distribution of anthrax in Africa throughout the Sahel, South Sudan, Central African 

Republic, Cameroon, Nigeria, Ghana, Burkina Faso, Mali, the Ethiopian Highlands, Horn 

of Africa, African Great Lakes Region, Zambia, Zimbabwe, Namibia, South Africa and 
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Angola. Suitability throughout Eurasia is extensive within eastern and western Europe, the 

Anatolian Peninsula, Kazakhstan, eastern and western China, the Caucasus region, Iran 

and eastern Siberia. Moreover, the majority of the Indian Subcontinent (India, Pakistan, 

Bangladesh, Nepal) is predicted to be suitable for B. anthracis as was Southeast Asia 

(Thailand, Cambodia, Vietnam, Laos), Japan, the Philippines, Indonesia and the Korean 

Peninsula. Suitability in Australia is prevalent throughout the eastern and northern extents, 

as well as the south and southwest of the continent. The distribution of CV values 

corresponds with areas of predicted very high and high ecological suitability within 

North and South America, sub-Saharan Africa, Eurasia, Southeast Asia and Australia (see 

Supporting Information, Appendix Figure 2).

In contrast, the circumpolar model (Figure 4) highlighted suitability throughout Alaska, the 

Northwest Territories, Nunavut and the Great Slave and Great Bear Lake region, which 

had previously been known for anthrax epidemics among bison (Dragon & Rennie, 1995; 

Figure 4). Furthermore, the circumpolar model highlighted suitable environments within 

Norway, Finland, western–eastern Russia and the natural boundaries of the Lena River, 

Eastern Highlands, Kolyma Mountains and the Kamchatka Peninsula. The Ob River area 

and the Yamal Peninsula, the site of the 2016 anthrax outbreak, adjacent to the Gulf 

of Ob and the Kara Sea, were also deemed suitable for B. anthracis. The distribution 

of CV values corresponds with areas of ecological suitability (very high, high; see 

Supporting Information: Appendix Figure 3). Lower uncertainty values in the environment 

are distributed throughout northern Scandinavia, eastern–western Russia, northern and 

eastern Canada and Alaska.

Variable importance for the global ensemble was highest for vegetation (EVI) and land 

surface temperature (LST) (Set 4; PC1–22.693; PC2–16.584), soil characteristics (Set 3; soil 

pH, cation exchange capacity, organic carbon content; PC1–21.689; PC2–15.277), primary 

climate conditions (PC1–10.25; tmax, tmin, vap, ppt, srad, ws) and topography (elevation–

slope; Set 5; PC1–5.19). The circumpolar model was most influenced by soil characteristics 

(Set 3; PC2–23.29; PC3–15.86; soil pH, cation exchange capacity, organic carbon content), 

topography (Set 5; PC1–14.107), derived climate (Set 2; q, pet, aet, def, soil, swe, vpd; 
PC2–13.43; PC1–11.98), vegetation (EVI) and land surface temperature (LST) (Set 4; PC1–

12.087) as well as the primary climate characteristics (Set 1; Set 1; tmax, tmin, vap, ppt, 
srad, ws; PC2–10.334; PC1–10.03; Figure 5).

3.1 | Bacillus anthracis risk zones for livestock

The potential disease transmission risk to livestock (cattle, goats, sheep) globally is 

presented in Figure 6. Geographically, livestock is at risk throughout the Plains of Canada, 

the United States and much of Central America, stretching into Columbia, Venezuela, Peru 

and Ecuador. High-risk zones are pronounced in northern Argentina, northeastern Brazil 

and the Central Valley region in Chile. The risk to livestock on the African continent 

is extensive throughout the Sahel, the Horn of Africa, the African Great Lakes region, 

western Madagascar and Southern Africa, specifically Angola, South Africa, Botswana 

and Zimbabwe. Throughout Eurasia, disease transmission risk to livestock is widespread 

within the European Union, Anatolia, the Caucasus region, Southern Russia, northern 
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Mongolia, Kazakhstan, Uzbekistan, Tajikistan and Kyrgyzstan. In addition, similar to the 

global ensemble, much of the Indian subcontinent, including Bangladesh, northern Pakistan, 

and southern Nepal, has a medium to high-risk level for livestock populations. In East Asia, 

the risk to livestock is significant throughout western, northeastern, central and southeastern 

China, the Korea Peninsula, Japan, the Philippines, Vietnam, Cambodia, Thailand and 

Myanmar. Suitability within Indonesia is primarily confined to Java, Sumatra and Celebes. 

The threat to livestock in Australia is limited to New South Wales, Victoria, Queensland and 

Western Australia.

4 | DISCUSSION

Using an ensemble ENM framework, this research expanded our knowledge of the potential 

geographic range of B. anthracis at global and circumpolar extents. The results of this 

study indicate that the distribution of anthrax is tied to well-known regions with historical 

and contemporary human and animal cases throughout North, Central and South America, 

sub-Saharan Africa, eastern and northern China, Central Asia, eastern and western Europe, 

India, Australia and Southeast Asia. Global anthrax occurrence records were collected 

from 1954 to 2021 (n = 874) across 94 countries. This study provides an update to the 

global and circumpolar predicted suitability of anthrax as well as the estimated spatial 

risk to livestock populations. Our results suggest that globally, factors driving B. anthracis 
suitability include vegetation (EVI), land surface temperature (LST), soil characteristics (soil 

pH, cation exchange capacity and carbon content), primary climate conditions (tmax, tmin, 
vap, ppt, srad, ws) and topography (elevation and slope). However, at the circumpolar scale, 

suitability for B. anthracis is influenced to a greater degree by soil factors (soil pH, cation 

exchange capacity and carbon content), topography (elevation and slope) and the derived 

climate characteristics (q, pet, aet, def, soil, swe, vpd). Our results align with previous 

studies documenting the sensitivity of B. anthracis spores to environmental factors such as 

vegetation, soil pH, carbon content, geological features and temperature (Dragon & Rennie, 

1995; Kracalik et al., 2017; Otieno et al., 2021; Walsh et al., 2018; WHO, 2008).

The risk of anthrax to livestock populations globally was (Figures 7–9) based on two 

primary factors: potential ecological suitability and livestock density (cattle, goats, sheep). 

This precision mapping framework has proven helpful in understanding the spatial risk 

factors associated with Zika virus and the pathogen Cryptococcus (Alaniz et al., 2017, 

2020) at continental and global scales. Disease transmission risk for livestock is significant 

throughout the Great Plains of Canada and the United States, Central America, northeastern 

Brazil, the Pampas and Gran Chaco regions of Argentina and central Chile. The risk to 

livestock on the African continent is concentrated throughout the Sahel, the Horn of Africa, 

East Africa and Southern Africa; as well as the European Union, Anatolia, the Levant, 

Caucasus region, Mongolia and Central Asia. The risk to livestock is widespread throughout 

the Indian subcontinent, as well as East and Southeast Asia, Indonesia, the Philippines and 

western (Western Australia) and eastern Australia (Queensland, New South Wales, Victoria).

Previous literature linking anthrax outbreaks with ecological determinants is primarily 

regional and ranges from the contiguous United States, Central Asia, India, Australia, 

sub-Saharan Africa, China, Zimbabwe and Uganda (Barro et al., 2016; Blackburn et al., 
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2007; Driciru et al., 2020; Joyner et al., 2010; Romero-Alvarez et al., 2020; Walsh et al., 

2019). The ENM algorithms applied in these studies favoured the genetic algorithm of rule 

set prediction, Maxent and boosted regression trees (BRT) (Blackburn et al., 2015; Carlson 

et al., 2019; Chikerema et al., 2013). More recently, Assefa et al. mapped the environmental 

suitability of anthrax in Ethiopia with an ensemble ecological niche model (Assefa et al., 

2020). To date, three articles have modelled the broad-scale distribution of anthrax globally 

and at higher northern latitudes (Carlson et al., 2019; Stella et al., 2021; Walsh et al., 2018).

Walsh and colleagues (2018) model highlighted potentially suitable environments for 

anthrax in circumpolar regions. This work used the Maxent algorithm (Phillips et al., 2006) 

and was particularly relevant considering the 2016 anthrax outbreak in the Yamal Peninsula, 

Russia, an outbreak affecting humans and wildlife, leading to the culling of thousands of 

reindeer (Rangifer tarandus) and significant economic loss to the local population (Hueffer 

et al., 2020). Walsh (2018) and colleagues concluded that warming temperatures, cattle 

density and wild ungulate species richness influenced the potential distribution at higher 

latitudes. Similar to Walsh (2018), Stella et al. (2021) applied Maxent (Phillips et al., 2006) 

in high-latitude regions of the Northern Hemisphere. They found that anthrax’s potential 

diffusion and emergence were related to environmental factors such as the soil-temperature 

anomaly (T) and active layer permafrost thickness.

Carlson et al. (2019), employing BRT, produced the sole global distribution model of 

anthrax and found that soil characteristics such as soil pH and vegetation were responsible 

for driving suitability patterns. Although all three models offer a significant contribution 

to the literature on the disease ecology of anthrax, there is an ever-increasing demand to 

refine the known distribution of the disease. Thus, expanding on the previous work of 

Carlson et al. (2019), Walsh et al. (2018) and Stella et al. (2021), this study redefined 

anthrax’s potential global and circumpolar distribution by exploring the relationship between 

occurrence locations and environmental factors via an ensemble ENM approach. Our models 

predicted an increase in suitable environments in South America, sub-Saharan Africa, 

East Africa, Pakistan, Australia, India, East Asia, Southeast Asia and western Siberia. In 

addition to the work of Walsh (2018) and Stella (2021) and their current modelling scenario, 

our model predicted an increase in suitable environments in western Siberia, the Yamal 

Peninsula, Canada, Alaska, eastern Russia and northern Scandinavia.

Underlying the risk of re-emergence of anthrax in the Arctic is the increase in global 

temperatures and the thawing of active layers of permafrost (Stella et al., 2020). 

Anthropogenic-driven climate change in temperate and high latitude regions of North 

America and the Arctic is hypothesized to be the catalyst for warmer temperatures, more 

rainfall, droughts and extreme weather events (Kangbai & Momoh, 2017). These climate-

related events play a central role in the incidence and distribution of emerging infectious 

diseases (Flahault et al., 2016). Regarding anthrax, because of its global distribution, it has 

been reported that climate change might promote a northern expansion of the disease. Thus, 

anthrax has been listed as a ‘climate sensitive’ disease (Parkinson et al., 2014; Stella et al., 

2021; Walsh, de Smalen & Mor, 2018). Recent studies have brought to attention the risks 

associated with climate change in the Arctic and the potential reemergence of bacteria and 

viruses in not only permafrost but also deep layers of sea ice (Bradley et al., 2005; Hedlund 
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et al., 2014; Stella et al., 2021; Waits et al., 2018). With the emergence of anthrax in Yamal, 

Russia in 2016 (Hueffer et al., 2020) and Sweden (Agren et al., 2014), it is believed that 

thawing permafrost and the movement of spores through sediments and soil because of 

freeze–thaw cycles were the catalysts for spillovers in these events (Revich & Pobolnaya, 

2011).

When comparing predicted high-risk anthrax areas estimated by this model versus estimates 

from other models, we observed a certain level of underprediction or lower capacity to 

detect risk areas by other models not using ensemble modelling. Overall, our global model 

suggests that anthrax spores could survive in much of the world and detected potentially 

endemic areas that had previously been under-predicted. Areas such as Northeast Brazil 

and parts of Southeast Asia, where no or few anthrax outbreaks have been reported. We 

hypothesize that the lack of disease surveillance and reporting could be responsible for the 

lack of data on anthrax occurrence in these areas. In regions where anthrax is not endemic, 

the disease is rarely recognized by human and animal health workers, where animal die-offs 

and human cases could easily be overlooked or misdiagnosed (WHO, 2008).

Ensemble ecological niche models are powerful tools that can be used to generate the most 

accurate predictions from incomplete and imperfect data. The flexibility of the ensemble 

modelling technique makes it a valuable tool for epidemiological questions, including 

disease mapping and niche modelling. Ensemble models use a range of components and 

perform better than single models alone (Bannick et al., 2020). Among the limitations of 

this study, it is essential to remember that ENM does not predict anthrax causation and is 

simply a correlative model, meaning that the spores may not be found in suitable areas. 

Also, ensemble models are more complex, and their interpretation is less direct than those 

provided by other modelling approaches. One risk of complex ensemble approaches is that 

they may overfit the data, resulting in models that place too much emphasis on one approach 

in a particular scenario or setting. Ray and Reich (2018) proposed using regularization or 

penalization to reduce the number of effective parameters estimated by a particular model 

as a helpful tool for ensemble infectious disease forecasting. However, due to the amount of 

data available and the ability to compare to previous models assessing the global distribution 

of anthrax, the risk of overfitting is decreased. Future work could explore the impact of 

weighting when ensembling.

Additionally, when utilizing ENMs, the risk of over -or underprediction needs to be 

acknowledged in the context of this study. For example, what was apparent in the global 

model was that some over-prediction was evident in much of Northern Australia, a region 

of the country without prior anthrax cases. In addition, overpredictions are also visible in 

the Great Lakes region of the United States and Canada. To account for this clear bias in 

the ecological suitability model, we deemed it necessary also to map the risk to livestock, 

which has a significantly higher risk of exposure to B. anthracis when compared to humans. 

Similarly, some limitations to the livestock risk model need to be stated. The model does 

not account for different types of animal management, including vaccination rates, livestock 

biosecurity and herd management. Areas determined as high risk for livestock do not 

necessarily reflect areas with a high burden of the disease. Perhaps in Western Europe and 

the United States, where more advanced and modern techniques for agriculture and animal 
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production and disease prevention are likely responsible for the low disease incidence, even 

in an area deemed as constituting a high degree of disease transmission risk.

5 | CONCLUSION

In summary, this study provides an update to the predicted ecological suitability of anthrax 

at global and circumpolar extents and delineates areas of elevated disease transmission risk 

to livestock populations. These maps can be used to enhance our understanding of the 

eco-epidemiology of B. anthracis and inform public and national health authorities on areas 

for potential anthrax occurrence, allowing for prioritization of interventions and preventive 

measures. Future work would benefit from continued transdisciplinary collaborations to 

improve these maps and those developed at finer geographic scales. It is hoped that the 

results of this study will enhance geographically targeted activities in environmentally 

suitable areas, which are critical in the management of anthrax, and provide the prerequisite 

for baseline assessments for data-driven control programs in endemic regions.
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FIGURE 1. 
Bacillus anthracis filtered (n = 713) occurrence records (white-black) buffered at 250 km 

(red) to define the model calibration (M region)
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FIGURE 2. 
Bacillus anthracis filtered (n = 75) occurrence records (white-black) buffered at 250 km 

(red) to define the model calibration (M region). The Yamal Peninsula (Russia), the site of 

the 2016 outbreak, is highlighted. The Arctic circle is represented at 66.5 N latitude
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FIGURE 3. 
Predicted global suitability of B. anthracis (median)
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FIGURE 4. 
Predicted circumpolar suitability of B. anthracis. Highlighted is the Yamal Peninsula 

(Russia), the site of the 2016 outbreak
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FIGURE 5. 
Variable contribution for the principal component (PC) sets used for the global and 

circumpolar ensembles. Variables on the y-axis correspond to the PC sets
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FIGURE 6. 
Anthrax disease transmission risk globally (cattle, goats and sheep)
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FIGURE 7. 
Anthrax disease transmission risk (cattle, goats and sheep) in Latin America (a) and Central, 

South, Southeast and East Asia (b). White-black symbols represent anthrax occurrence 

records
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FIGURE 8. 
Anthrax disease transmission risk (cattle, goats and sheep) in Eurasia (a) and sub-Saharan 

Africa (b). White-black symbols represent the anthrax outbreak occurrence records
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FIGURE 9. 
Anthrax disease transmission risk (cattle, goats and sheep) in North and Central America (a), 

Australia (b) and Southern Africa (c). White-black symbols represent the anthrax outbreak 

occurrence records
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TABLE 1

Environmental variables included in the ecological niche model at global and circumpolar extents

Primary climate variables (Set 1) Unit Source

Maximum Temperature (tmax) °C TerraClimate

Minimum Temperature (tmin) °C TerraClimate

Vapour Pressure (vap) kPa TerraClimate

Precipitation (ppt) mm TerraClimate

Downwards Surface Shortwave Radiation (srad) w/m2 TerraClimate

Wind Speed (ws; 1981–2010) m/s TerraClimate

Derived Climate Variables (Set 2)

Runoff (q) mm TerraClimate

Potential Evapotranspiration (pet)

Actual Evapotranspiration (aet) mm TerraClimate

Climate Water Deficit (def) mm TerraClimate

Soil Moisture (soil) mm TerraClimate

Snow Water Equivalent (swe) mm TerraClimate

Vapour Pressure Deficit (vpd) kpa TerraClimate

Soil Characteristics (Set 3)

Soil pH (H2O) g/100 g Soil Grids

Cation Exchange Capacity g/100 g Soil Grids

Organic Carbon g/100 g Soil grids

Vegetation and Surface Energy (Set 4)

Enhanced Vegetation Index (EVI) 0–6.5 WorldGrids

Land Surface Temperature (LST) °C WorldGrids

Topography (Set 5)

Elevation Mean EarthEnv

Slope Mean EarthEnv
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